

Entité Propriétaire DT_ES_RS

Type doc NT NOTE TECHNIQUE-DESCRIPTIF-NOTE DE CALCUL

JUSTIFICATION DE LA DEMANDE DES DISPOSITIONS PARTICULIERES DES CONDITIONS D'APPLICATION DU TITRE III DU DECRET 99.1046 DESORBEUR 2220B-14 DE L'ATELIER

T1

Ce document contient des informations masquées dans l'objectif de garantir :

- la protection des installations,
- le secret industriel.

L'ASN détient la version complète de la présente note.

BIstoker

Signataires :			
	Nom	Entité	Visa
Rédacteur		EXT-AREVA NP	07/06/2016
Vérificateur		DT_PRO_CPS	07/06/2016
Approbateur		DETR_CD	07/06/2016
11.11.11.11.11.11.11.11.11.11.11.11.11.			

Les signatures électroniques portées ci-dessus sont garanties par la GEIDE

E&P	Type Doc	. Activité 100807	N° Ordre	Révision C	REF
AREVA NC					REF

3 juin 2016

NOTE TECHNIQUE

JUSTIFICATION DE LA DEMANDE DES DISPOSITIONS PARTICULIERES DES CONDITIONS D'APPLICATION DU TITRE III DU DECRET 99.1046

DESORBEUR 2220B - 14 de l'Atelier T1

	CARACTERISANTS E&P
UNITE CHAINE	2220B
REPERE EQUIPEMENT	14
BATIMENT BLOC	T1
NIVEAU	- 7,65 m
SALLE	
SECTEUR (site)	
AIRE (site)	1
CODE ARTICLE	1
CMT (3 num)	120
CARA	CTERISANTS AREVA NC HAGUE
TYPE DOC	NT
AUTRE	1
GROUPE	AP
FAMILLE	
SPEC,TECH.	AP

Rév.	Rédaction	Vérification	Approbation
С			

AREVA NP INGENIERIE & PROJETS (E&P) FC GA 1262 Rév.C-07.1

	_	
F	ጼ	Р
C	Ct	Г

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0065
 C

REF

AREVA NC REF

Page: 2/60

HISTORIQUE DES REVISIONS

Rév.	Date, N° de contrôle, Signata	ire et repérages des paragraphes modifiés
Α	Approbation le : 28/02/2014 Rédacteur : Vérificateur : Approbateur :	N° de contrôle : 000
В	Approbation le : 23/02/2016 Rédacteur : Vérificateur : Approbateur :	
С	Rédacteur : Vérificateur : Approbateur :	

OD JET DU DOCUMENT ET CHAMD D'ADDI ICATION

E&P

Type Doc. Activité N° Ordre Révision Cat.MT NT 100807 12

C 0065

REF

REF

AREVA NC

Page: 3 / 60

SOMMAIRE

OBJET DO DOCCIVIENT ET CHAWIF D'AFFLICATION	
2 OBJET DE LA REVISION	5
3 SIGLES ET ABREVIATIONS	6
4 DOCUMENTS DE REFERENCE	
5 DESCRIPTION DU FONCTIONNEMENT DU DESORBEUR ESPN	
5.1 PRINCIPE DE FONCTIONNEMENT	9
5.2 CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT PROCEDE	12
5.3 CARACTERISTIQUES DE DIMENSIONNEMENT DES COMPARTIMENTS CALOPORTEUR	
6 CARACTERISTIQUES DIMENSIONNELLES	12
7 EXIGENCES REGLEMENTAIRES	14
7.1 APPLICABLES LORS DE SA FABRICATION	
7.1 APPLICABLES LORS DE SA FABRICATION	14
7.2.1 Classement de l'équipement	14
7.2.2 Inspection périodique	15
7.2.3 Regualification périodique	15
8 OBSTACLES A LA MISE EN ŒUVRE DES ACTIONS REGLEMENTAIRES	16
8.1 ENVIRONNEMENT DE L'ESPN	
8.2 ACCESSIBILITE A L'EQUIPEMENT	18
8.3 EXAMEN VISUEL	19
8 4 MISE EN PRESSION (EPREUVE HYDRAULIQUE)	19
8.4.1 Compartiment nucléaire	19
8.4.2 Compartiments sous pression	
8.5 PERIMETRE DE LA DEMANDE DE DISPOSITIONS PARTICULIERES	
9 ESTIMATION DE LA PROBABILITE DE LA DEFAILLANCE	20
9.1 DETERMINATION DU FACTEUR FABRICATION	20
9 1 1 Dossier descriptif	21
9.1.2 Matériau	21
9 1 3 Historique du fonctionnement de l'équipement	22
9.1.4 Présentation du dossier de calcul	22
9.1.5 Note de calcul statique	22
9.1.6 Tenue en fatigue	25
9.1.7 Note de calcul en fatigue	20 27
9.1.8 Niveau du facteur de fabrication de l'équipement	28
9.2 DETERMINATION DU FACTEUR ETAT	28
9.2.2 Examen visuel	29
9.2.3 Mesures d'épaisseur	29
9.2.3.1 Caractérisation théorique idéale	29
9 2 3 2 Caractérisation réelle.	29
9.2.3.3 Caractérisation de l'état réelle par comparaison avec un équipement témoin	30
9.2.3.3.1 Matériaux constitutifs et épaisseurs initiales	31
9.2.3.3.2 Conditions d'exploitation	31
9.2.3.3.4 vitesses d'écoulement	
9.2.3.3.1 Conclusion de la comparaison	34
9.2.3.4 Estimation de l'évolution de la perte d'épaisseur	34

E&P

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0065
 C

REF

AREVA NC

Page : 4	/ 60
9.2.3.4.1 Démarche	34
9.2.3.4.2 Epaisseur de conception	
9.2.3.4.3 Vitesse de perte d'épaisseur	36
9.2.3.4.4 Détermination d'une durée minimale de fonctionnement (DMF) réduite par rapport à la perte d'épaiss	eur36
9.2.3.4.5 Estimation de la périodicité des campagnes de mesures d'épaisseurs	36
9.2.4 Suivi de l'historique de fonctionnement	37
9.2.4.1 Suivi des températures de fonctionnement du désorbeur	37
9.2.4.2 Suivi de l'acidité dans le désorbeur	37
9.2.4.3 Suivi des cycles en fatigue du désorbeur	38
9.2.5 Niveau du facteur état de l'équipement	38
9.3 DETERMINATION DU FACTEUR DEGRADATION	
9.3.1 Sensibilité de l'équipement face aux dégradations potentielles	40
9.3.2 Corrosion.	
9.3.2.1 Détermination de la probabilité d'apparition de la dégradation	43
9.3.2.1.1 Données expérimentales	43
9.3.2.1.2 Retour d'expérience des inspections sur équipements similaires	45
9.3.2.1.3 Probabilité d'apparition de la dégradation de type corrosion	45
9.3.2.2 Détermination de la maîtrise des conditions d'exploitation	45
9.3.2.3 Détermination de l'adéquation des inspections aux dégradations	46
9.3.2.4 Niveau du facteur de dégradation	47
9.3.3 Erosion-corrosion	47
9.3.3.1 Détermination de la probabilité d'apparition de la dégradation	
9.3.3.1.1 Sensibilité des zones à l'érosion-corrosion	47
9.3.3.1.2 Retour d'expérience des inspections sur équipements similaires	48
9.3.3.1.3 Probabilité d'apparition de la dégradation de type érosion-corrosion	49
9.3.3.2 Détermination de la maîtrise des conditions d'exploitation	49
9.3.3.3 Détermination de l'adéquation des inspections aux dégradations	50
9.3.3.4 Niveau du facteur de dégradation	
9.3.4 Fatigue	51
9.3.4.1 Détermination de la probabilité d'apparition de la dégradation	51
9.3.4.2 Détermination de la maîtrise des conditions d'exploitation	51
9.3.4.3 Détermination de l'adéquation des inspections aux dégradations	52
9.3.4.3.1 Adéquation des inspections liées à la fatigue	
9.3.4.4 Niveau du facteur de dégradation	52
9.3.5 Facteur Global de dégradation de sécurité de l'équipement	53
9.4 DETERMINATION DU NIVEAU DE SECURITE DE L'ESPN	53
10 EVALUATION DES CONSEQUENCES DE LA DEFAILLANCE DE L'ESPN	54
10.1 RETOUR D'EXPERIENCE (REX)	54
10.2 RAPPEL DES CARACTERISTIQUES DE L'ESPN	
10.3 CONSEQUENCES SUR LE PERSONNEL.	
10.4 CONSEQUENCES SUR L'ENVIRONNEMENT	
11 PERIMETRE DE LA DEMANDE D'AMENAGEMENT D'APPLICATION DU TITRE III POUR LE SUIVI EN SERVICE	57

E&P	Type Doc	. Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 5/60

1 OBJET DU DOCUMENT ET CHAMP D'APPLICATION

Les Equipements Sous Pression Nucléaires (ESPN) sont soumis aux dispositions de suivi en service du Titre III du décret [1] relatif aux Equipements Sous Pression. Ces dispositions sont précisées dans l'arrêté [2] dans son titre III et dans ses annexes 5 et 6.

De ce fait, le désorbeur à iode 2220B-14 de l'atelier T1 est soumis à ces dispositions réglementaires de suivi en service.

L'accessibilité à l'ESPN étant difficile du fait de son implantation et de l'ambiance radiologique, la totalité des gestes réglementaires n'est pas réalisable sur cet ESPN. Il doit ainsi faire l'objet d'une demande de décision individuelle d'octroi de dispositions particulières de suivi en service en absence de dérogation existante conformément au guide [3].

Le présent document, à l'appui de notre demande, comprend :

- la description de l'équipement et les justifications pour solliciter des modalités particulières de suivi en service,
- l'analyse des différents facteurs impactant la probabilité de défaillance de l'équipement et notamment l'analyse des données disponibles concernant sa fabrication, son état et sa sensibilité aux dégradations,
- la démonstration que les mesures compensatoires envisagées en remplacement de tout ou en partie de certaines actions réglementaires, permettent de garantir que le niveau de sécurité de l'équipement sera au moins équivalent à celui qui serait établi par la réalisation complète des exigences réglementaires,
- la présentation d'informations relatives aux conséquences potentielles de la défaillance,
- le périmètre de la demande d'aménagement d'application du titre III du décret 99.1046.

OBJET DE LA REVISION

L'objet de cette révision est la prise en compte des demandes complémentaires formulées :

- dans le courrier [4],
- par l'ASN dans le cadre des VdS et des échanges sur l'envoi des CPAT3 4120-21 et 23 de l'atelier T2 en octobre 2015.
- par l'ASN ainsi que des réponses apportées par AREVA NC Etablissement de la Hague dans le courrier 2016-23760.

NT 100807 12 0065 C		Type Doc.	Activité	Cat.MT	N° Ordre	Révision
	E&P	NT	100807	12	0065	С

Page: 6 / 60

REF

REF

3 SIGLES ET ABREVIATIONS

DE Double-enveloppe
DEX Dossier d'exploitation

DMF Durée minimale de fonctionnement
ESPN Equipements sous pression nucléaire

EG Eau glacée

EIP Equipement Important pour la Protection

INB Installation nucléaire de base

OIHA Organisme Indépendant Habilité et Accepté

PG Performance globale

PI Performance intrinsèque

POES Programme d'opération, d'entretien et de surveillance

PS Pression Maximale Admissible

RPS Rapport provisoire de sûreté

VA Vapeur d'eau

ZIS Zone(s) identifiée(s) la(les) plus sensible(s)

DOCUMENTS DE REFERENCE

- [1] Décret 99.1046 du 13 décembre 1999 relatif aux Equipements Sous Pression
- [2] Arrêté du 12 décembre 2005 relatif aux Equipements Sous Pression Nucléaires
- [3] CODEP DEP 2013 034129 : Conditions particulières d'application du Titre III du décret 99 1046 aux Equipements Sous Pression Nucléaire

NC

- [4] CODEP DEP 2014 017304 : Rejet des demandes de conditions particulières d'application du titre III du décret du 13 décembre 1999 aux équipements sous pression nucléaires
- [5] 2014-37518 : Justification du classement du désorbeur 2220B-14 de l'atelier T1 en « ESPN de Niveau 2 » selon l'arrêté du 12 décembre 2005
- [6] Décret du 2 avril 1926 portant règlement sur les appareils à vapeur autres que ceux placés à bord des bateaux
- [7] Arrêté du 15 Mars 2000 relatif à l'exploitation des équipements sous pression

E&P	Type Doc	. Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 7 / 60

- [8] Arrêté du 21 décembre 1999 relatif à la classification et à l'évaluation de conformité des équipements sous pression
- [9] Fiche COLEN n°24 : Vérification intérieure des équipements
- [10] CODEP DEP 2013 066339 : Transmission de dossiers de demandes d'octroi de conditions particulières d'application du titre III du décret 99.1046 à des équipements sous pression nucléaires
- [11] 2015-69869 : PROJET ESPN: RAPPORT CONTROLE VISUEL DU DESORBEUR A IODE 2220B-14 DE L'ATELIER T1
- [12] 2014-2854 : Dossier Descriptif du désorbeur 2220B-14 de l'atelier T1
- [13] NT 1301 00 0278 A : Note de calcul Etude Statique Désorbeur à iode de T1
- [14] 2015-72498: EXAMEN CONFORMITE VIEILLISSEMENT ZONE 4 PRESTATIONS DE MESURES D'EPAISSEUR PAR ULTRASONS SUR EQUIPEMENTS PROJET ECV CELLULE DE L'ATELIER T1 DESORBEUR A IODE
- [15] NT 10019 00 0013 A : Note de calcul Cycles thermiques admissibles pour les désorbeurs à iode
- [16] NT 1301 12 0123 A: Note de calcul Analyse thermique de la cuve du désorbeur à iode Calcul des contraintes secondaires et fatigue
- [17] NT 1301 12 0124 A : Note de calcul Double enveloppe de refroidissement du désorbeur à iode T1 Contraintes secondaires et fatigue
- [18] 2015-49249 : Programme d'Opération d'Entretien et de Surveillance (POES) Désorbeur à iode 2220B-10 Atelier T1
- [19] HAG 4 2720 91 03384 00 : Soupapes montés sur des appareils soumis Atelier T1
- [20] 2015-46440 : Spécification technique de contrôle non destructif Désorbeur à iode T1 2220B-14
- [21] 2014-36993 : Principes de détermination de la durée de vie des équipements ESPN
- [22] NT 100807 00 0100 A : NOTE TECHNIQUE Comptage des cycles de fatigue du désorbeur 2220-14B de l'atelier T1
- [23] NT 1301 12 0119 A: Double enveloppe de chauffage du dissolveur T1 contraintes secondaires et calcul à la fatigue

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 8 / 60

- [24] 2016- 10430: FICHE DE CONTROLE TEST EN PRESSION PARTIE VAPEUR ESPN ATELIER T1 UNITE 2220B 14 ANNEE 2016
- [25] 2016-8473 : FICHE DE CONTROLE TEST EN PRESSION ESPN ATELIER T1 UNITE 2220B 14 ANNEE 2016.
- [26] Courrier COR ARV 3SE INS 13-003 : Guide inter-exploitant des conditions particulières d'application du Titre III du décret 99.1046 aux équipements relevant des annexes 5 et 6 de l'arrêté du 12 décembre 2005.

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 9 / 60

5 DESCRIPTION DU FONCTIONNEMENT DU DESORBEUR ESPN

5.1 PRINCIPE DE FONCTIONNEMENT

Le principe de fonctionnement et les caractéristiques des flux traités dans le désorbeur sont présentés dans l'Analyse de Sûreté de justification de classement en niveau de l'ESPN [5].

Le désorbeur est constitué de quatre compartiments indissociables (Figure 1) :

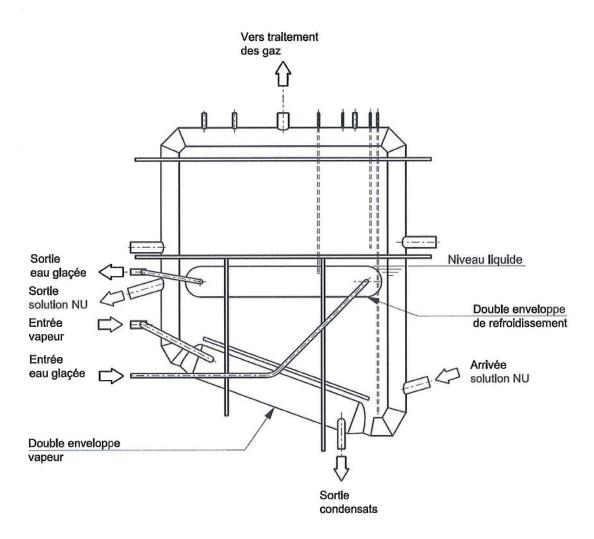
- un compartiment procédé en dépression contenant la solution de dissolution dont l'activité est supérieure à 370 GBq,
- un compartiment sous pression d'un volume de L (double enveloppe de chauffe) soudé extérieurement sur le fond de la cuve du désorbeur et contenant le fluide caloporteur (VA) sans activité radiologique,
- deux autres compartiments sous pression d'un volume de litres, soudés extérieurement sur les faces latérales du compartiment procédé et contenant le fluide de refroidissement (EG) sans activité radiologique.

Pour rappel et à titre indicatif le désorbeur est à ce jour un EIP de rang 1.

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 10 / 60

Désorbeur 2220B-14 atelier T1



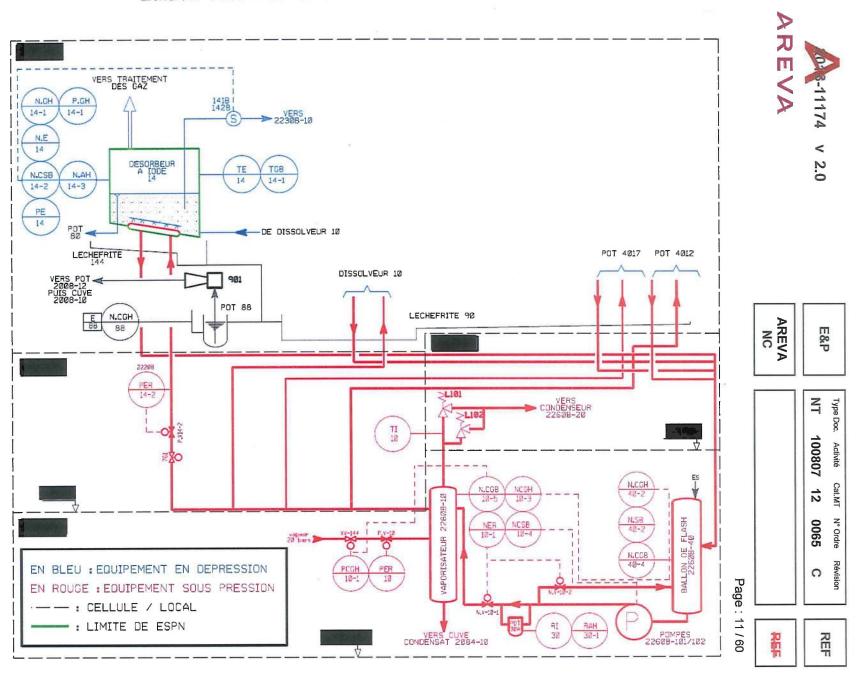

Figure 1 - Schéma descriptif du désorbeur 2220B-14 de l'atelier T1

Figure 2 - Schéma de principe du désorbeur 2220B-14 et de son circuit caloporteur (Unité 2260B)

Edition GEIDE du 07/06/2016 - Etat Validé

E&P

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0065
 C

REF

AREVA NC REF

Page: 12 / 60

5.2 CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT PROCEDE

Données	Unité(s)	Compartiment procédé	
Fluide		Solution de dissolution	
Pression mini - maxi de service	bar relatif	- 0,02 / + 0,02	
Température Normale de service	°C	110	
Volume au trop plein	L	740	

5.3 CARACTERISTIQUES DE DIMENSIONNÉMENT DES COMPARTIMENTS CALOPORTEUR

Données	Unité(s)	Compartimen	Compartiments caloporteur		
Fluide		VA	EG		
Pression Maximale Admissible (PS)	bar relatif	6,6	1,15		
Température Maximale Admissible	°C	168	110		
Volume double enveloppe	L				

CARACTERISTIQUES DIMENSIONNELLES

Les principales caractéristiques du désorbeur 2220B-14 sont les suivantes :

- hauteur totale (intérieur cuve) :
- longueur totale (intérieur cuve) :
- largeur totale (intérieur cuve) :

Le matériau constitutif du désorbeur 2220B-14 est le

Les épaisseurs nominales de fabrication des différents composants pour le désorbeur 2220B-14 de T1 sont (Figure 3) :

- cuve : (vert),
- double-enveloppe inférieure : (rouge),
- doubles-enveloppes latérales (faces avant et arrière) : (bleu).

6-11174 v 2.0	E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0065 C				Révision C	REF
AREVA	AREVA NC					7	REF

Page: 13 / 60

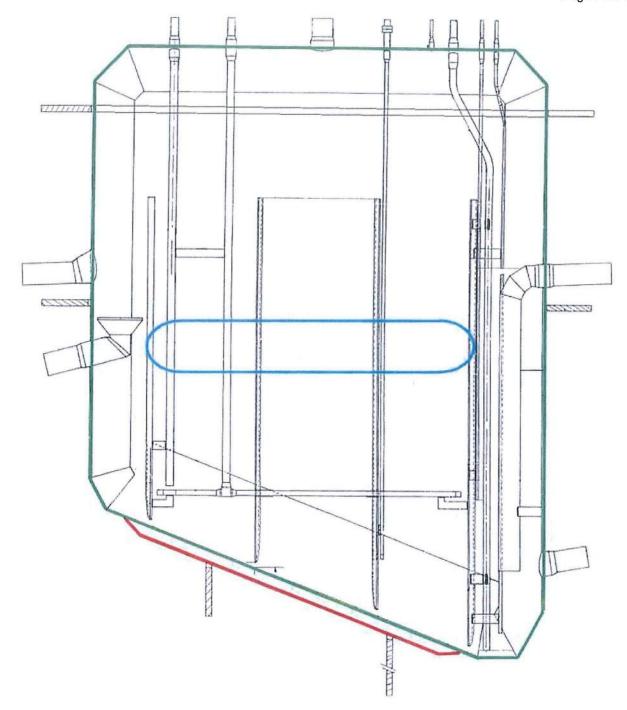


Figure 3 - Epaisseurs nominales de fabrication des tôles du désorbeur

Type Doc. Activité Cat.MT N° Ordre Révision E&P NT 100807 12 0065 C

AREVA NC

REF

REF

Page: 14/60

EXIGENCES REGLEMENTAIRES 7

APPLICABLES LORS DE SA FABRICATION

L'équipement bien que non soumis au décret du 2 avril 1926 [6] « portant règlement sur les appareils à vapeur autres que ceux placés à bord des bateaux », du fait que ne sont soumis que les appareils à pression vapeur ou eau surchauffée d'un volume supérieur à 100 L, a respecté les exigences de ce décret tant pour sa conception, sa fabrication et pour sa mise en service.

Le désorbeur 2220B-14 a été conçu, fabriqué (épreuve initiale de la double enveloppe de chauffe le 04/02/90 à bars - Voir DER 1301 12 057 202 Rév.A, épreuve initiale des doubles enveloppes de refroidissement le 04/02/90 à bars - Voir DER 1301 12 057 202 Rév.A) et mis en service en Août 1990 avant l'évolution réglementaire de 1999 / 2000 (Décret 99.1046 du 13 décembre 1999 [1], Arrêté du 21 décembre 1999 [8] et Arrêté du 15/03/2000 [7]).

Il a été demandé un régime dérogatoire vis-à-vis de l'Arrêté 15/03/2000 [7] pour la réalisation des contrôles réglementaires compte tenu :

- de sa conception : trois compartiments sous pression entièrement soudé, un compartiment nucléaire constitué d'une cuve entièrement soudée,
- de la difficulté d'accéder à son contact périodiquement, sans entreprendre des actions complexes de rinçage / décontamination avec un risque résiduel important pour le personnel intervenant (exposition / non mise en sécurité des personnes,...).

enveloppes de refroidissement en service en Août 1990 avant décembre 1999 [1], Arrêté du 2 ll a été demandé un régime de contrôles réglementaires complexes de rinçage personnel intervenant (1 les différents éléments (notes précédemment transmis (HAG et HAG 0 0513 06 20147 de proposées. La demande de dérogation HAG 00513 07 20281 du 11/10/07 reprenait sous forme de synthèse les différents éléments (notes techniques, analyses de sûreté, dossiers descriptifs réglementaires) précédemment transmis (HAG 0 0513 02 20102 du 22/09/05, HAG 0 0153 06 20026 du 16/02/06 et HAG 0 0513 06 20147 du 29/06/06) explicitant le contenu des mesures compensatoires

7.2.1 Classement de l'équipement

Le désorbeur à jode 2220B-14 de l'atelier T1 relève du classement N2 et de catégorie II selon les exigences des arrêtés du 12 décembre 2005 [2] et du 21 décembre 1999 [8].

Les fluides caloporteurs (VA et EG) appartiennent aux fluides de Groupe 2. Cependant, d'après l'article 4 de l'arrêté [2], si l'équipement est de niveau N1 ou N2, comme c'est le cas pour le désorbeur 2220B-14 de T1, les critères de classement des fluides de groupe 1 sont à appliquer même si le fluide est de groupe 2.

D'après les annexes 5 et 6 de l'arrêté ESPN [2], si l'équipement est un récipient de catégorie l à IV et de niveau N1 ou de catégorie II à IV et de niveau N2 ou N3 contenant un fluide autre qu'un liquide dont la pression de vapeur, à la température maximale admissible, est inférieure ou égale à 0,5 bar au-dessus de la pression atmosphérique normale alors cet équipement est soumis à l'inspection périodique et à la requalification périodique.

E&P	Type Doc.	100807		Révision C	REF
AREVA NC					REF

Page: 15 / 60

Le désorbeur 2220B-14 de l'atelier T1 est un équipement de niveau N2 et de catégorie II, alors il est soumis à l'inspection périodique et à la requalification périodique.

7.2.2 Inspection périodique

En application de l'annexe 5 de l'arrêté ESPN [2], l'inspection périodique doit comprendre une vérification extérieure et intérieure de l'équipement ainsi qu'une vérification extérieure des accessoires de sécurité installés sur l'équipement.

D'après l'annexe 5 de l'arrêté ESPN [2], la vérification extérieure et intérieure de l'équipement porte sur toutes les parties visibles après exécution de toutes les mises à nu et démontage de tous les éléments amovibles.

De ce fait, comme l'explique l'annexe 3 du courrier [3], si, par conception, il n'existe aucune partie visible après exécution de toutes les mises à nu et démontage de tous les éléments amovibles, la vérification visuelle porte donc sur un ensemble de parties vides.

Le désorbeur 2220B-14 de l'atelier T1 est composé d'un compartiment sous pression entièrement soudé par conception et qui n'a pas d'orifice de visite (double enveloppe inférieure de chauffe), ainsi la vérification visuelle intérieure du compartiment sous pression porte sur un ensemble de parties vides.

La fiche COLEN n°24 [9] précise tout de même que « pour un équipement qui, par conception, ne présenterait aucune partie interne visible après exécution de toutes les mises à nu et démontage de tous les éléments amovibles, l'absence de vérification intérieure doit être prise en compte :

- par l'exploitant qui définira dans le programme des opérations d'entretien et de surveillance les modalités de contrôles adaptés aux modes de dégradation redoutés,
- par l'organisme indépendant habilité et accepté qui réalise ou fait réaliser lors de la requalification périodique de l'équipement tout examen ou essai complémentaire jugé utile. »

En application de l'annexe 5 de l'arrêté ESPN [2], l'intervalle entre deux inspections périodiques ne peut dépasser 40 mois.

7.2.3 Requalification périodique

En application de l'annexe 6 de l'arrêté ESPN [2], la requalification périodique d'un équipement comprend les opérations suivantes :

- une inspection de requalification périodique,
- une épreuve hydraulique (ou une épreuve de résistance),
- la vérification des accessoires de sécurité qui le protègent.

L'inspection de requalification périodique comprend :

- une vérification intérieure et une vérification extérieure de l'équipement, y compris des assemblages permanents réalisés sur l'équipement et des accessoires sous pression installés sur l'équipement.
- une vérification de l'existence et de l'adéquation du dossier descriptif, de la notice d'instructions et du dossier d'exploitation,

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 16 / 60

 tout examen ou essai complémentaire jugé utile par l'organisme ou le service d'inspection reconnu.

Elle porte sur toutes les parties visibles après exécution de toutes les mises à nu et démontage de tous les éléments amovibles.

L'épreuve est réalisée au vu des résultats favorables de l'inspection. Elle consiste à maintenir l'équipement à une pression égale à 120 % de la PS.

Dans le cas d'un équipement multi-compartimenté, l'épreuve hydraulique s'applique à tous les compartiments dont la PS est supérieure à 0,5 bar relatif. Aucune épreuve hydraulique n'est à prévoir sur un compartiment qui ne peut fonctionner qu'en dessous de 0,5 bar relatif. Ainsi, si un compartiment ne peut fonctionner qu'en dessous de 0,5 bar relatif comme c'est le cas du compartiment nucléaire du désorbeur 2220B-14 de T1 (voir § 5.2), aucune épreuve hydraulique n'est à réaliser.

En effet, il est précisé dans l'annexe 1 du courrier [10] « la mise en pression du compartiment nucléaire en dépression n'est pas une exigence réglementaire ».

En application de l'annexe 6 de l'arrêté ESPN [2], le désorbeur 2220B-14 de l'atelier T1 est un récipient sur lequel les critères de classement des fluides de groupe 1 sont à appliquer, l'intervalle entre deux requalifications périodiques ne peut donc dépasser 5 ans (soit 60 mois).

OBSTACLES A LA MISE EN ŒUVRE DES ACTIONS REGLEMENTAIRES

8.1 ENVIRONNEMENT DE L'ESPN

Le désorbeur 2220B-14 est situé dans une cellule en zone inaccessible au personnel en dépression par rapport aux locaux adjacents accessibles et par rapport à la pression atmosphérique au moyen du réseau de ventilation bâtiment.

La cellule d'implantation du désorbeur est une cellule mécanique classée zone 4 (zone rouge). La cellule est donc communicante avec la salle de maintenance (zone rouge) grâce au plancher amovible mais les deux salles sont inaccessibles au personnel.

L'épaisseur des murs en béton armé de la cellule est de :

- voile Ouest :
- voile Nord :
- voile Sud :
- voile Est :

E&P

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0065
 C

REF

AREVA NC REF

Page: 17 / 60

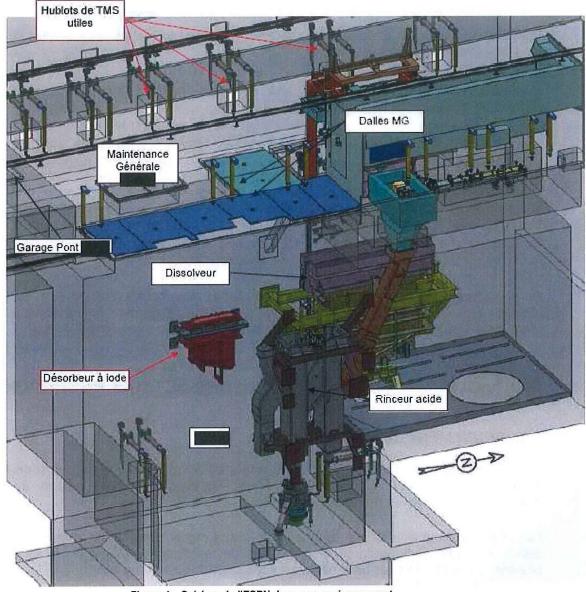


Figure 4 - Schéma de l'ESPN dans son environnement

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 18/60

8.2 ACCESSIBILITE A L'EQUIPEMENT

L'équipement est situé dans une cellule mécanique. En conformité avec nos standards de conception, des ponts de maintenance, un toboggan, des télémanipulateurs et des hublots existent sur le voile entre la cellule et la zone 2 adjacente

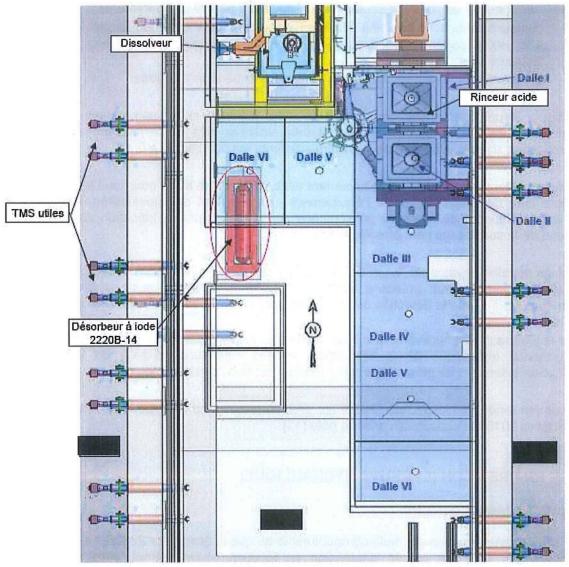


Figure 5 – TMS permettant d'atteindre le désorbeur 2220B-14

L'implantation du désorbeur 2220B-14 de l'atelier T1 en zone inaccessible (débit de dose non compatible avec accès personnel) rend les inspections réglementaires aux contacts impossibles.

Contrairement au cas du dissolveur, le désorbeur à iode ne possède pas de couvercle amovible, la cuve du désorbeur est entièrement soudée il n'est donc pas possible de réaliser des investigations en passant par l'intérieur de la cuve du désorbeur.

E&P	Type Doc	. Activité 100807	N° Ordre	Révision C	REF
AREVA NC					REF

Page: 19 / 60

Selon les moyens actuels d'investigation il n'est pas possible de mesurer la paroi commune entre la cuve du désorbeur et les doubles enveloppes de chauffe et de refroidissement.

8.3 EXAMEN VISUEL

Le désorbeur est un équipement sous pression nucléaire à multi compartiments :

- compartiments sous pression : entièrement soudés pour éviter les risques de fuite en zone
 4 et ne disposent pas de parties démontables permettant d'effectuer les inspections visuelles internes.
- compartiment nucléaire : constitué d'une cuve entièrement soudée.

L'examen visuel interne des compartiments sous pression et du compartiment nucléaire est impossible puisque ces compartiments sont entièrement soudés. La performance intrinsèque pour la vérification visuelle intérieure de ces compartiments est donc égale à 0.

L'examen externe des parois de l'équipement est possible mais limité pour tous les compartiments compte tenu de l'implantation de l'équipement en zone 4 et des possibilités d'introduction de moyens de vision à distance. La performance intrinsèque pour la vérification visuelle extérieure dépend de la surface qui peut être inspectée.

Pour les doubles-enveloppes VA et EG la surface extérieure inspectable est considérée de façon pénalisante comme étant inférieure à 20%, la performance intrinsèque de la vérification visuelle extérieure vis-à-vis de la détection de fissuration externe et de perte d'épaisseur externe est donc égale à 1.

Pour le compartiment nucléaire, la surface extérieure inspectable est comprise entre 25 et 50%, la performance intrinsèque de la vérification visuelle extérieure vis-à-vis de la détection de fissuration externe et de perte d'épaisseur externe est donc égale à 2.

Le compte rendu de l'inspection réalisé sur site, en présence d'un organisme mandaté par l'ASN en octobre 2015 est consultable dans la note [11].

8.4 MISE EN PRESSION (EPREUVE HYDRAULIQUE)

8.4.1 Compartiment nucléaire

Dans le cas d'un équipement multi-compartimenté tel que le désorbeur 2220B-14 de l'atelier T1, le compartiment nucléaire est en dépression en fonctionnement normal, ainsi aucune épreuve hydraulique n'est réalisée sur le compartiment nucléaire. La performance intrinsèque du geste réglementaire d'épreuve hydraulique sur le compartiment nucléaire est égale à 0 puisque le compartiment ne peut fonctionner qu'en-dessous de 0,5 bar relatif (cf. § 5.2).

8.4.2 Compartiments sous pression

Les tests en pression des compartiments caloporteurs ont été réalisés en Août 2015 et Janvier 2016, Réf. [24] et [25].

E&P	Type Do	c. Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 20 / 60

8.5 PERIMETRE DE LA DEMANDE DE DISPOSITIONS PARTICULIERES

Les vérifications partielles extérieure et intérieure de l'équipement compte tenu des éléments suivants :

- l'implantation dans une cellule de zone 4 dont l'ouverture induit une exposition élevée des intervenants (ambiance radiologique),
- le nombre limité d'outils permettant la manipulation de matériel.

motivent la demande d'aménagement pour l'application des dispositions particulières de suivi en service de cet équipement.

ESTIMATION DE LA PROBABILITE DE LA DEFAILLANCE

Conformément à la méthode d'élaboration d'un dossier de demande de conditions particulières d'application du titre III du décret du 13 décembre 1999 [1] aux ESPN [3], l'analyse du niveau de sécurité de l'équipement doit être réalisée de manière itérative, en partant de la situation réelle de l'équipement, puis, si besoin, en intégrant les mesures complémentaires à mettre en œuvre au fur et à mesure de l'analyse et de la connaissance de l'équipement.

Les facteurs à considérer pour l'estimation de ce niveau de sécurité sont définis dans [3] :

- Facteur Fabrication,
- Facteur Etat,
- Facteur Dégradation.

.1 DETERMINATION DU FACTEUR FABRICATION

« Le facteur fabrication concerne tous les éléments qui permettent d'évaluer le niveau de qualité de fabrication de l'équipement et le niveau de confiance que l'on peut attribuer à cette qualité. Il est basé sur un dossier de fin de fabrication et l'état descriptif de l'équipement.

Ces éléments peuvent être complétés par des expertises de l'équipement incluant des contrôles directement sur l'équipement, des reprises de calculs,....

Les niveaux de probabilité sont définis comme suit :

- Niveau 1 : Equipement conforme à un code de construction ou à une norme harmonisée et dont le dossier de fabrication est complet,
- Niveau 2: Equipement conforme aux règles de l'art ou équipement dont les éléments pertinents du dossier de fabrication ont été reconstitués par l'exploitant sur la base de données du fabricant, quel que soit le référentiel de construction (code, norme, règles de l'art,...),
- o Niveau 3 : Absence de dossier de fabrication de l'équipement ».

E&P	 Activité 100807	N° Ordre	Révision C	REF
AREVA NC				REF

Page: 21 / 60

9.1.1 Dossier descriptif

L'équipement a été conçu conformément au référentiel réglementaire et normatif de l'époque et par rapport aux standards de conception, il dispose d'un dossier descriptif complet [12] comprenant tous les documents qui attestent de sa conformité.

Le Dossier Descriptif de l'équipement [12] est conforme à la réglementation de l'époque et conforme à la réglementation actuelle au travers de son contenu :

- notes de calcul,
- plans d'ensemble,
- plan de détails.
- procédures et qualification (LOFC, cahiers de soudage, qualifications des modes opératoires de soudage, qualification des soudeurs, spécification de mesure de dureté superficielle, spécification d'examen visuel, spécification de contrôle par ressuage, spécification d'épreuve de résistance, spécification de contrôle par radiographie,...),
- documents de contrôles et épreuves (contrôle des approvisionnements, certificats matière, PV état des lieux, plans de repérage des radiogrammes, PV radiogrammes, PV traitement thermique, PV de ressuage,...),
- documents essais et recette (PV d'examen visuel, PV d'épreuve hydraulique, PV de contrôle dimensionnel, Identification matière, PV état de surface,...).

	-	plans densemble,
100	-	plan de détails,
07/06/2016 - Etat Validé 7.1.		procédures et qualification (LOFC, cahiers de soudage, qualifications des modes opératoires de soudage, qualification des soudeurs, spécification de mesure de dureté superficielle, spécification d'examen visuel, spécification de contrôle par ressuage, spécification d'épreuve de résistance, spécification de contrôle par radiographie,), documents de contrôles et épreuves (contrôle des approvisionnements, certificats matière, PV état des lieux, plans de repérage des radiogrammes, PV radiogrammes, PV traitement thermique, PV de ressuage,), documents essais et recette (PV d'examen visuel, PV d'épreuve hydraulique, PV de contrôle dimensionnel, Identification matière, PV état de surface,).
E 912) Maté	óriau
	. WIGH	, iau
DE du	Le ma	tériau utilisé pour la fabrication est :
Edition GEIDE		
		rnant les soudures, métal ort a été effectué.
	Un su d'appr	iivi rigoureux de la qualité des demi-produits a été réalisé tout au long du processus ovisionnement lors de la fabrication du désorbeur à iode 2220B-14 de l'atelier T1.
	l'intern matièr	emble des exigences de qualité d'élaboration du a été pris en compte par nédiaire de la définition de critères de qualité et de contrôles, pour l'approvisionnement le concernant la qualité des tôles, des tubes sans soudures, des barres, pièces forgées et d'apport utilisés dans la construction des désorbeurs à iode.

E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 22 / 60

9.1.3 Historique du fonctionnement de l'équipement

Au cours des essais de fonctionnement en inactif, les pressions de	fonctionnement
AND AND AND AND AND AND ADDRESS OF THE AND ADDRESS OF THE AND ADDRESS OF THE ADDR	aved
des pressions de tarage des soupapes amenées aux valeurs de	bars pour la boucle VA

Ces informations se retrouvent dans le document [19], pour les valeurs de tarage des soupapes des boucles de chauffe.

L'équipement fonctionne donc depuis l'origine dans les conditions suivantes :

1,15 bars
1,15 bars
110°C

- Calcul statique : NT 1301 12 0278 (Réf.[13]) datée du 20/10/1989
- Calcul en fatigue / fluage: NT 10019 00 0013 A (Réf.[15]) datée du 25/02/1997

Lors de la conception du dés Note de calcul statique Lors de la conception du dés Note de calcul – Ca

Lors de la conception du désorbeur T1-2220B-14, une note de calcul statique a été réalisée :

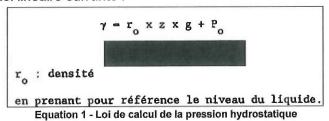
Note de calcul - Calcul statique du désorbeur T1 et de sa charpente en condition de design, fonction incidentel et épreuve T1 [13].

L'équipement est dimensionné avec les éléments suivants

- Le Code de calcul utilisé : ASME Boiler and Vessel pressure code Section III
- Les conditions de calcul :
 - Chargement:

Le chargement mécanique considéré est la superposition des cas élémentaires :

- poids propre,
- pression hydrostatique du liquide de dissolution,



E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 23 / 60

En condition de design, la masse volumique du liquide est de La pression hydrostatique résultante sur les parois du désorbeur est calculée pour chacun des éléments de la cuve selon la loi linéaire suivante :

z = par rapport à l'axe de la roue.

P₀ = surpression de (renvoi aux conditions de fonctionnement)

En condition d'épreuve, la masse volumique est

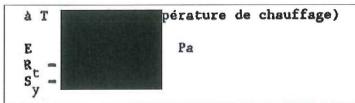
- pression dans les doubles-enveloppes de chauffe, refroidissement et casse mousse.

	DE de réchauffage	DE de refroidissement et casses-mousses
Pressions internes en condition de design		
Pressions internes en condition d'épreuve		
Pressions internes en condition accidentelle		
Température internes en condition de design		
Température internes en condition accidentelle		

Tableau 1 - Pressions internes en design, épreuve et accidentelle

La PS du compartiment vapeur est de 6,6 bars, et celle des compartiments de refroidissement est de 1,15 bars.

- Le matériau :



E&P	Type Doc.	Activité 100807	N° Ordre	Révision C	REF
AREVA NC					REF

Page: 24 / 60

- Caractéristiques des éléments du désorbeur :

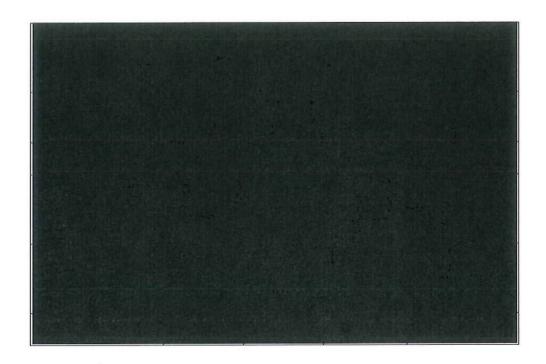
Equation 3- Caractéristiques de la double enveloppe à

Equation 4 – Caractéristiques de la cuve et des raidisseurs à

Equation 5 – Caractéristiques de la cuve et des raidisseurs à (cas d'épreuve)

Tolérance de fabrication :

La tolérance minimum de fabrication des tôles de la cuve du désorbeur est de (§9.2.3.2).


- Le dimensionnement a été réalisé et validé à ce qui est enveloppe de l'épaisseur nominale corrigée de la tolérance de fabrication.

Le tableau ci-dessous présente les valeurs en contrainte du dimensionnement et les admissibles associés :

E&P	Type Do	c. Activité 100807		Révision C	REF
AREVA NC					REF

Page: 25 / 60

<u>Nota</u> : Les contraintes ci-dessus sont le cumul des maximas de contraintes de Tresca des cas de charge élémentaires. Les pics de contraintes ne sont pas nécessairement localisés aux mêmes lieux géographiques.

19.1.6 Tenue en fatigue

Lors de la conception du désorbeur T1-2220B-14, des notes de calcul en fatigue ont été réalisées :

- NT 1301 12 0123 A Analyse thermique de la cuve du désorbeur à iode T1- Calcul des contraintes secondaires et fatigue [16]
- NT 1301 12 0119 A Double enveloppe de chauffage du dissolveur T1 contraintes secondaires et calcul à la fatigue [23]
- NT 1301 12 0124 A Doubles enveloppes de refroidissement du désorbeur à iode T1 Contraintes secondaires et calcul à la fatigue [17]
- NT 10019 00 0013_A Note de calcul Cycles thermiques admissibles pour les désorbeurs à iode [15]

Selon les notes [16], [23] et [17] la vérification des critères de protection contre les dommages de type S est effectuée dans le cas des doubles enveloppes de chauffe (le cas du dissolveur est dimensionnant pour le désorbeur) et de refroidissement du désorbeur de T1, selon la méthodologie de l'ASME.

Or l'ASME ne prenait pas en compte l'interaction fatigue-fluage, pour vérifier le bon dimensionnement de l'équipement à ce mode de dégradation, des résultats de R&D sur le ont été intégrés de manière plus complète lors des études de dimensionnement du désorbeur de la chaine B de l'atelier R1.

E&P	Activité 100807	N° Ordre	Révision C	REF
AREVA NC				REF

Page: 26 / 60

L'évolution des conditions de fonctionnement présentée au § 9.1.3 a été appliquée pour les chaines A et B de T1 et a été utilisée pour la conception de la chaine B de R1.

De ce fait le comportement en fatigue-fluage, des dissolveurs de T1A et B et de R1B sont identiques.

9.1.7 Note de calcul en fatigue

Le dossier de dimensionnement en fatigue-fluage du désorbeur R1-2220B-14, est constitué par la Note de calcul - Cycles thermiques admissibles pour les désorbeurs à iode er [15].

D'après la note de calcul en fatigue-fluage, l'équipement a été dimensionné de la manière suivante :

- Code de calcul utilisé : RCC-MR.
- Les conditions de calcul :
 - Données de calcul :

Le calcul en fatigue de l'équipement prend en considération une variation de pression de une variation de température de (voir tableau 3) ce qui est enveloppe de conditions de fonctionnement de l'équipement.

La température du caloporteur est mesurée en amont de l'équipement ce qui est enveloppe de la température réelle au niveau de l'équipement.

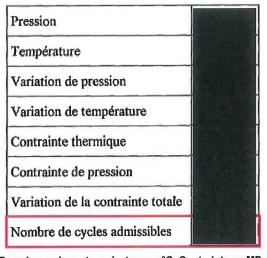
Tableau 2 - Données de calcul pour la double enveloppe inférieure de chauffe du désorbeur

(nota) : Correspond à une pression extérieure (pression hydrostatique dans le désorbeur).

les hypothèses de modélisation :

Le calcul est effectué conformément au RCC-MR, sur un modèle éléments finis plaques représentant le fond de la cuve et la double enveloppe de chauffe. Le modèle représente la double enveloppe du dissolveur R1. Les géométries des doubles enveloppes du dissolveur et du désorbeur sont identiques mais le dissolveur est plus long que le désorbeur. Les contraintes calculées sur le dissolveur sont donc majorantes pour le désorbeur.

les résultats de calcul :



E&P	Type Doc.	Activité 100807	N° Ordre 0065	Révision C	REF
AREVA NC					REF

Page: 27 / 60

Le dommage de fatigue-fluage maximum est obtenu pour la soudure de la double enveloppe de chauffe sur le fond de la cuve. Les résultats de calcul pour la pression maximale de service (6 bars) sont résumés dans le tableau ci-dessous :

Pression en bars, température en °C, Contrainte en MPa. Tableau 3 – Résultats des calculs en fatigue-fluage du désorbeur à la pression maximale de service

Le nombre de cycles admissibles en pression et en température du désorbeur 2220B-14 de T1 est N_{adm} = Cycles (le nombre de cycles admissibles minimums calculé).

Considérant l'hypothèse de modélisation précisée à la page précédente, ce nombre de cycles admissibles sera mis en jour suite à la reprise de la note de calcul en fatigue-fluage pour les dissolveurs de R1 et T1 aux PS et TS mentionnées, c'est-à-dire

Le nombre de cycle admissible sera actualisé d'ici fin octobre 2016.

Au regard du paragraphe 9.2.4.3, le dissolveur restant l'équipement dimensionnant (taux d'endommagement évalué la modification du nombre de cycles admissibles sur cet équipement n'est pas de nature à remettre en cause la justification de l'équipement vis-à-vis du risque de fissuration par la fatigue.

9.1.8 Niveau du facteur de fabrication de l'équipement

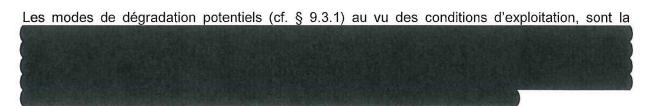
Compte tenu de la conformité du dimensionnement à un code de construction et des documents du dossier descriptif [12], le niveau du facteur de fabrication de l'équipement est un facteur de **Niveau 1**.

E&P	Type Doc	Activité 100807	N° Ordre	Révision C	REF
AREVA NC					REF

Page: 28 / 60

9.2 DETERMINATION DU FACTEUR ETAT

« Ce facteur évalue l'état de l'équipement par rapport à des dégradations avérées. Il est basé sur l'état réel de l'ESPN à ce jour, et doit prendre en compte les incertitudes liées à la caractérisation de cet état.


Le niveau de ce facteur, pour un équipement présentant des dégradations, est à définir en fonction de la caractérisation de ces dégradations et de l'estimation de leur évolution en service au regard des marges de sécurité définies à la conception de l'équipement.

Les niveaux de probabilité sont définis comme suit :

- Niveau 1 :

- Equipement ne présentant aucune dégradation ou,
- Equipement présentant des dégradations pour lesquelles l'exploitant peut garantir de façon certaine que leur évolution en service, estimée de façon conservative, permet de maintenir les marges de sécurité du même ordre de grandeur que celles présentes à la conception ou,
- Equipement sensible à des modes de dégradation ou de vieillissement dont l'exploitant peut justifier qu'ils ont été spécifiquement pris en compte à la conception (dimensionnement avec des propriétés estimées en fin de vie, surépaisseur de corrosion,...) et de garantir que leurs évolutions en service, estimées de façon conservative, restent couvertes par les hypothèses considérées à la conception.
- Niveau 2: Equipement ne se situant pas dans le cas précédent, présentant des dégradations pour lesquelles l'exploitant considère que leur évolution en service, estimée de façon conservative, conférera à l'équipement, à la fin de sa durée de fonctionnement prévue, une résistance du même ordre de grandeur que la résistance minimale définie à la conception, dans le respect des marges de sécurité.
- Niveau 3: Equipement présentant des dégradations pour lesquelles l'exploitant ne peut garantir que leur évolution en service, estimée de façon conservative, conférera à l'équipement une résistance au moins égale à la résistance minimale définie à la conception, dans le respect des marges de sécurité, à la fin de sa durée de fonctionnement prévue. ».

9.2.1 Modes de dégradation

E&P	 Activité 100807	N° Ordre	Révision C	REF
AREVA NC				REF

Page: 29 / 60

L'état réel de l'équipement est par conséquent caractérisé par des mesures d'épaisseurs résiduelles des zones accessibles pour surveiller l'état d'avancement de la corrosion et de l'érosion-corrosion, et par le suivi de l'historique de fonctionnement pour surveiller que le désorbeur travaille bien dans la plage de cycles prévue à la conception.

Une campagne de mesure d'épaisseur par ultrason a été effectuée sur la cuve du désorbeur à iode en Août 2015 [14].

9.2.2 Examen visuel

Au regard des contraintes d'accessibilité et des méthodes d'investigation disponibles, l'observation des surfaces est partielle.

Le résultat de cet examen visuel est décrit dans le document [11]. Aucune anomalie particulière n'a été décelée.

Dans le cas idéal, les mesures d'épaisseur

Dans le cas idéal, les mesures d'épaisseur

Sensibles (ZIS) (cf. § 9.3.2.1.1) a spécifications sont précisées dans une [20] qui précise notamment une car contrôler le comportement de l'équipe évoluer en fonction des résultats obter

9.2.3.2 Caractérisation réelle

Le désorbeur à iode 2220B-14 de l'ate des mesures au contact de l'équiper de l'éq Dans le cas idéal, les mesures d'épaisseur sont réalisées dans les Zones Identifiées les plus Sensibles (ZIS) (cf. § 9.3.2.1.1) avec un nombre de points de mesures suffisant. Les spécifications sont précisées dans une note technique de spécification de contrôle non destructif [20] qui précise notamment une cartographie idéale de mesures d'épaisseur à réaliser pour contrôler le comportement de l'équipement dans sa globalité. Ce document peut être amené à évoluer en fonction des résultats obtenus lors de la précédente campagne de contrôles.

Le désorbeur à iode 2220B-14 de l'atelier T1 est situé en zone 4.

Le voile de la salle adjacente est muni de télémanipulateurs. A partir des hublots, il est possible de réaliser des mesures au contact de la paroi du désorbeur à iode

Les mesures d'épaisseur ont été menées en Août 2015 [14].

Les épaisseurs mesurées sur désorbeur à iode 2220B-14 de T1 sont présentées en Figure 6.

Les épaisseurs mesurées sont comprises dans les tolérances d'approvisionnement des tôles et sont supérieures à l'épaisseur nominale.

